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“. ABSTRACT

Optirum non-linear filters belonging to Zadsh's class . 8111_~.
are coneidered. Attention is restricted to those systems whose
present output is influenced only by a portion of the past in-
put. The input sigpal consizts of a meesege and noise both of
which are ststiopary random processes. For this cimss of filters .,
it is found that only the second order Pljohability density func-
tions of the message and the nolse are necessary for obtaining
tbe optimizing integral equation. It is assumed that the ampli-
tude of the input time series 1s tounded I‘end tukes on discrete
values at all 4imes. This assumption is not too restrictive in
practice since date supplied by ccaputers and devices using digi-
tal read-out are quantized. By eubjecting the joint probability
density functions to a few mild restrictiocns, &t is found that
the optimizing integ:ral eguaiion zﬁducei to a system of integrel
equations of the Wierer-Hopf type. By virtue of the assumptlons
made, the Fourier transforis of the kermels of these equations
are rational functions. A method is developed for the solution of
this set of simyUtaneous integral equaiions and three exsmples are
given. ’
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I. OPTIMIM ROK-LINEAR FILTERS

1. Intrecduction

Broadly speaking, optimuan filters and predictors are devices de-
signed to produce, upon acting on the past of a time series, a va ue
which estimates a degired velue of some Punction of time in an opti-
mm fashion acccrding to some fixed ez'z;or writerion. The most con-
ventiopal optimum criterion bas been the Least square error criterion.
Adoption of this criterion has often resalted in eguations that can
be handlesd sonlytically. When the impnt time series is stationary,
the claasic work of Wienerl has showy. that the impulse regponse of
the optimum stetionary linear filiter which acts on the infinite past
of the input is the solutior of the Wiener-Hopl equation. Subsaquent
to Wienar's publication, the subjee:c (£ optimm lipear fi{ltering and
prediction has been extended in many :irections. Among them are the
wvork of Zadeh and Regazzini ,2 Boc‘l:on,f' ead Davish for contimuous sys-
tems and the vork of B»lum,5 Chang_,s end others for sampled-data sys-
tems. DBy corntrast, due to the lack of knowledge of characterizing
a nor-linesr system as well as the innhereant difficuliy in any analyti-
cal treatment, relatively little vwork has been done with non-linear
filters. Conditions under which opoiaam £ilters for the detection
and predicticn of signals ars non-l.near were atudied by Lard.ng"7 and
Izrenicks only for discrete date polini:s. They have considered the
cage in which the messag® is a non-i'vadon linear combination of known
time functions with unknown coeffici.wmta: in particular, polynomial
furctions were considered. On the otaer hand Zadeh’ has outlined
an approach which is bssed on the consideration of a certein system
of classes of non-linear filters. He hw derived a sequeace of linear
integral equations for a class of optimw filters and has shown that
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as the filter structure becomes more coeplicated, more and more in-
formation 1s necessary on the statistics of the input time series.

A rather gensralized result in optimm prediction and filtering using
the least square error criterion was derived by Pugachevo'm The
condition which he derived includes all of the optimizing equations

as special cases.

Inssmich as & linear filter is a degenerate caxe of & non-linear
filter, improved results can usually be obteined by using 2 non-linear
filter. However, we often find in practice that the emount of
statistical data recessary for the design of non-lipear fliters far
exceeds vhat is avajlsble. In addition, the complexity of the struc-
ture of the filters leads to problems that are unmanageable by ana-
lytical means. In order to circumvent this difficulty, it is common
practice to pwake simplifying assumptions about the charmcleristics of
the message and noise processes as well as to restrict attention to
& certain class of filters.

The optimunz filters to be considered in this report lie within
&6 class of tilters whose input-output relationship can he expressed
“ e

t
ylt)} = So Kix{t - 1),7]ar 0<t<T (1.1} ‘

Systams characterized by (1.1) have been designated by Zadeh® as

constituting the class 3'11" This class is & member of a sequence

of classes of non-linear filters designated as 311, ‘_ne, ces Classes. <
The class of linear filters is a subclass of ‘3’11. Consequently

every clsss in the hisrarchy includes the class of linear filters.

To cite an example in this class, consider

Kix(t -~ 1),51 = £lx(t - 7jIn(¥) (1.2}




where P£{z} 1s any fuuction of its argwwent and h{v} is %he unit
hmpralee response of a phyeically reallzedble linesxr filter. Then

e
v

yivi = § glx(t-1)ls{rjas D<t<T (1.3}
[«

epragents the output of o system which consists of a casceds arrange-
went of aa arhiirary zero pemory aon-licsar device followed by o
Jimser £ilter of mawory size T.

fig data supplied Ly com:;uters and dzvices using digliel reed-ocut
are guentized, {1t sesms logiesl to dncorporete thiz lnfopmnion in
the design of Pilters. The following snslysle shows hhah ihds &
mriord ilnformetion can be need fruiifully vhen the form of toe filter
8 given by (1.1).

2. Formulelion of the Optirpmm Predicior -t
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As in Wiener's theory, it will be postulated that the predictor is
optimum vhen 1) the epsemble mean of c{t} is equal to zero for

all ¢, and 2} the ensemble variance of e(t) is a minimum. Let
ug denote the ensemble average by < >,.. The filter is therefore

AV
optimum when

Q{tbm 2 0 (1.6)
and

Qa(tbm = minimm (1.7)
From (1.5), we have

o 2

<62(t)> W <\§o Kix(t - r),f]d’tg >Av (1.8)*

T
-2 <S K[x(t-7},7ldr >< q[m(t-ia}]>Av
o

(atatoic)s}”
+ < Lq[m(taic)jj >Av
Upon expansion, (1.8) beccmus

2 ©® o« T 7T , |
<ty = \ \ & V K(xy,m) >K(x,,75) > 1{x; x,)ar dr dx dx,
-0 < )

00
Vo § | ) < gl < atx )
-2 Kix ,z,) >< >X pix ,m jdr. dm
S‘_m §oo So 1Tt 2C almg) < pix) ,my T dn A
o 5 '
+ | ol )p(m am (1.9}
“00

# We sssume here that enougk time has elapsed since the signal started;
consequently, the upper limit of the integral is replaced by T.




vbere in {1.9) we have circumvented the lengthy notation by letting

x, = x(t,-'tl)
xa = x(t-1‘2>

m, = aft + a)

p(xl,xe) @ plx(t - 'rl), x(t - 1‘2>; 3y -re]
= joint probebility density function of x(t - -rl) and
x{t ~ 12)
rix(t - 70, m{t + a); ) +06]
= Jjoint probability Qensity function of x(t - 1;1‘) and
o{t + a)

p(m)) = olz(t + a}l
= Pirst order probsbility deamdsy function of m{t + a)

K

p(x),m )

Our aim is to £ind the kermel X(x{% - 1),7] which mintmizes (1.9).
The minimization of <€°(t¥>,. 18 accomplished by the usual
technique of variational cale. m8. The varistion 81 corresponding
to an aduigsible vardation BBK iu K is

Q0

2 @ 2 I ST .. . .
8 = p° 8X(x, , T, )8K(x,,7..) >< px, ,x, }dr. ax,
| § 30 ) SE T R% T 1R Ty ATp0x, Ox,

T o _
+ 2P j: So SK(xLl,'rl)d‘rldxl x{ S-oo S: K(xz ,fa)p(xl,z%)d*rzéxa

(s, "]
-4 a{m jp(m,,x, Jam (1.10).
Y0
. asy ,
By svaluating ==~ and settinz it to zero at P = 0, w= obtain,

for all admiesible &K(xl,‘rl),
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o T
) I ekl e

- 0

3

X O

w N
i% S K(xz,'ta‘) Xp(xl,xa)d'taﬁoca
@
- S q(ma> Xp(ma, x,_)ma} = 0 {1.11)
“o0

The desired cptimlzing integral equation for the kernel X is
therafore of Lthe form

o (o) Ul
) o< dm = (x,5T,) >< Pix, ,x, )&
\ alm) < plmyx Jem, \m ) Ky p) > pixy iy )asytny
0< Ty <T {1.10;

In order to show thet {1.12) gives & true ninimum rather then a mere
ataticoary sclution, we proceed e folloes. Let us consider m
£ilter Q{x,7) which iz different from K(x,v). Inspection of {1.9)
ghows thet the mean square error resuliing from using the filter
A{x,T) can he ssrangsd to read

20 ® 2
Dy o\ e,

[s.4] o \
. &m -\oo \o K(ﬁ,fl)Q(ma) > p(ma,xl)dfldmadxl
on [o+) o
+ % X { { lalxy, 7)) - Klxy, 7)) (@5, - Rixy,m,)]
*® -~ o0 ©° >

>€ p(xl ,xz)drldradxldx? {1.131




which is greater than or equal to the mean square error resulting
from using the filter K(x,t), nsmely

® 2 ® © ?‘
\_m q"(my)p(m )du, - X_w §w X K(x),7 )a(m)) >< p(m ,x, )as dm dx,
(1.14)

since the last term in (1.13) is non-negative. Consequently, we
conclude that the statiomary solution does, in fact, give a mini-
Ium mean SQUArE error.

3. Quantized Tnputs

As mentioned in Section I.l, the smplitude of the input time
series mgy be asssumed to De bounded end discrete at all times in
view of the nature of the measuring device. This is illustrated in
Figure 1, vhere the observed input is dsnoted by x#{t). It is
noted that no assumption is gade regarding the smplitudes of the
contimious processes m(t) and n(t). Our analysis includes the
speclal case in which the amplitudes of both the message and the
noise procitgses are bounded and discrete for all .

m(t)
x*(t) to the
g filter
_a®)
Pig. 1 Block Disgram Shoving the Actusl Inputs: x*(t)

is a Quntized, Time-contipnous Signal




If we let the mmber of the amplitudes of the input signal be
2%, +then the joint probability density functions p{x{, J%) and.
;p{ma,mf) can be expressed as S

N 4N
p<’q‘:;x§) - imfg Jgfn Ai:J("rl“T'é”s(gﬁ* - lci))ﬁ(xé‘ N cd)
1,40 e

L7 {1.15)

b §

and

1
s - oyl ‘1.
p(mu,xf) = . fibm ; «:l«acﬁ >< o{x¥ 2y {1.16}

10

zre A, Q 6y - 2]? is the probebility whet x#t - ) equals
e, and x-»/t - ?) equuls cj’ and b :fa(:qm,'cﬂa)dnu denotes
the probebility that x*{t-7)) equale o, Yand mltia) lies between
p and M. Substituting (1.15) and z, 16} into (1.11) and equat~
ing the corresponding ccoefficients of the d:ite functions associated

with X, we hews

) . 43 ?',c -
€im sl =< qlm jdn = by A, it~ > Kle,1., 037
S:,mi(' o1’ o« o' * su-8 Yo ﬁ,3'£ 1 2” Rl 23‘ 2
30 0 €T 10K uo0wl,dsu0e,F

{1.27)

Por arbitiary A J(, 1-'1" {3 and ¢ i85 1"’0” the simultancous
set, of integral aqm*ions sz {1.17) 1s far tco complex for any ans-
Lytical soluticn. In #faet, it is inprobable that & direet solution
can aiways be fourd. In order to obtain & reagonable solution, the
folicwing assumpbions regarding the probability density funcbions are
made:




A, The Joint probability dengity function of the measage and
of the moise mre symsetrical with respect to their arguments as
well as symetrical with respect to the origin, namsly

Bylmysmy) = plmy,m) = pl-m,-m) (1.18)
Pylny,n,) = pln,n) = p-n,-n,) (1.19)
It follows that p(xl,xa) which is given by
© o
ponam) = )\ mlmer) < pin - m, gomlamas, (1.20)

also has the same property. On the otber hand p(md, xl) vhich is
glven by

o) .
opx) =\ p(mm e oy om dam, (1.21)
® ,
is only symeirical sbout the origin. In texms of the expwessions

in {1.16) aud (1.17), this assumption can be written eymbolicelly
as

Ai,.j(l“loa') = AJ;i(l‘tl_?QD} = A_i’-d(l‘l'lw‘fé) (lo&)

fi(mc;'ri—{-a) = r_i(-ma;'tl-l-?.') (1.23)
Iet us define
<o

X fi(na;‘xl-ic)q(ma)ha - ui( "fl-i-a) {1.24)

=00




Since <q(n o)>Av = 0, it follows from (1.23) that

2 (vpta) = -5 ,(r;4c) (1.25)

B. For all 1 and J, the quantities [Ai, a(| Ty~ | -
Ai,wjﬂ'rlmreﬂ)] are sums of a firite mmber of decaying ecponentials.d
It is the logical extension of the usual assuaption that the suto-
correlaticn fimctioa vhich 1s given by

Rleaml = <yxpdyg = 2

z C -
cyeyhy 4T |)
i
iz the ami of exponential. functionsz.

In view of assumption A, the optimm filter cen be represented
ty the gtructure shown in Figurz 2.

e o
v e, T >
QANTIZER [©_, {ey7) ‘
or |
2 1 avpromune [ —_—s 5 e——
SELECTOR
K{ck,t) >
. ‘
e -X

Fig. 2 Schematic Representation of a Non-lircax Pjiter

ik

# Thiz is » wesker conditfon than that which requires all 4, 1( ﬁ"x’lw'ra{;}
o be Sceay-ing exponentials. 3




K(c,,7)
In Pig. 1, --El’—— are the uit Impulse responses of linear

filters. m:esyétmbacmauwwm

Kle,, Kle, ,%
<:; i - (z Q for all j amd k. (1.26)

To sze the validity of Fig. 1, 1t is necessary to ghow that
Ke,,7) = <Kle_,, ) J=1,2 ooy ¥ (L27)

From (1.6) we couclude that

g = 0 (1.28)
Consequently
<Kl - 7,71 3 = © (2.29)
let f" = the probability that x*(t ~ t) takes on value cJ.,
Then.
Ty = £, J % L2 ooo, N {1.30)

vhich can be deduced fram our previcves agsunptions on the prucess
x#{t). Eq. {(1.27) becomes

N . _
z . . . "
I e {Lx(cj,zmxa,ma,c)} - 0 (152)

In order for (1.31) to hold for sy set of £, satisfylng g £yr 1,
it is recessery that

K(ej,i’} o+ K(c_d,'r) ® 0 2w 1,2 soey N {1.32)




which agrees with {1.27). Eq. (1.18) can now be written ns

4N T
zi(xl-ga) " J-fu X [Ai“j(ﬂﬁrl-'reﬂ) - Ai,«,j(ﬂtl' 1)1 ><K(c‘1,~:2)d72

30 027 €T da-Nueo,-L,1,o00, 8 (L1.33)

By using (1.22) avd (1.25), it is seen that N of the 2N equations
in (1.33) ere redundant. Lzt us replace <, and T, by ¢t and
T respectively, and let
v lit=e) = A (et -8y (Te-s]) (1.34)
E(T) = K7 ) (1.35)

Bg. (1.33) g£inall, reduces to

¥y o
rltia) = = [ v {{t-spE(rlas {1.36)
) =1L Y% J
0<tLT; 1=1,2,...,8

From (179 we see that the minimm mear squsre error is given by

5 7T
12 F >y = LoDy -2 2 | wamtar (o0
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4. Method of Solution

It was shown in the previous section that w, J( |* 1} is the
sum of a number of decaying exponential functions; hence its
Pourier transform, defined as

(o]
24 L L - :
wij(, ) = S—m wij(l'rg)e dT A = 2xf (1.38)
is a retional function of AQQ Suppose¥®
2
D, P, .(\%)
W, (3% - LA (1.39)
15 2
&{r%)

wiere Dy y wre constants, Q{ha)) iz of order d and B, J(xa)

is of order n,, (nid < d). %e shall derive in this section a
necegsury ard sufficient condition under vwhich a unique, sbsolutely
integrable sclution of {1.36) exists. Kj(t) is sbeulutcly integrable

ir
b5
S lxj(t)l at <o for 3 = 1,2,0.0,8 (1.40)
VI

vhich is the usual stability condition for lirvear systous. A system
is, for our purposes, defined to be siwble if all hounded Inputs
result in bovnded ocutpats. Our result will also indiceie that a
formal solution can always be cbtalued I the rvestriction imposed by
{1.30} 1s rewoved. The appreach bhere is Pirst to transfomm {1.36)

to a simpler system of integral equatiors. I% is then shown that the
solution of the modified system of lulegral equations dnes; in fact,
satisfy {1.35). Vhen convenient, the foilowiag nocation will be
used?

——ci

- . n
% The caumon dexaminstor of &1l ¥, (\") bhas besn usad.
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[(m = an Nx B square mstrix whose elements are D,, {this
ratrix 1s assumed to be non-singular)

[p1™* = inverse of [D]

K(t) = o columm matrix whose elements are time functions KJ(t),
J = 1,2,000,80

z2{tia) = 8 columm matrix whos: elements are time functions.

ZJ(W)’ J=1,2,0.0,8

Yithg) = o colunm matrix whoss elements are time funciions,
*{#W), J=1,2,000,N

%(jt]) = inverse Pourler transfomm of 1/(»2

T
{ w{ t-t})K(1)dr] = a column metrix vhose elements are

(1 -7 IR, (7)as;
° 3@ 1,2, 00,0

0~""3

2
[®( E..é,)] = an Nx ¥ square matrix vhose elements are linear

(44 da & .
operators, Di.§P§.3(°E€§); i3 = 1,2,0..,K.
Wi y{tia) be any solution satisfying the following system
of dilferential equations:

2
N ) d. “’1. 2 q o Y
z{tha) = D - ;;émnl thie} O0<t<T {1.41)
and let the medified set of intezral eguations be given by
T N )
yita) « D] Sit-vK(xjar] o0<t<rT {1.h2)
[

We will now show that the solution of {1.42} slso satisfizs (1.36)
To see this we pre-multiply both sidescf {i.%2} by [2;.,.1’ vaich
becomes

Lyt 0<t<T (1.43)

e

T/‘. -
[§ W{tt-r]'Ki)as] « [D]
[+}




5

2
Opersting an both sides of (1.43) by [D P (- $)) yields

PN a2 -1
(op{- ——-é)][y v(lt-r|)K(v)ar] = [DP(- ~5)1[D]"" y(t4a)
at ° dt

0<t<T (1.4%)

The left side of (1.4%) is a column matrix whose elements are

N £ 0T A
Jil DBy~ 5 Sé Al -1 K, ()ax
i= 1,2, eo0, N

vhich, as shown in Appendix A, becomes

5| vy (et K ()
z W t-1! )K,{7jd7; i=1,2,...,N
% & "

Equation {1.44) therefore reduces to

N T
T g wﬁ(\t-ﬁ)x‘,(f)d‘t - zi(ma); 0<t<T
J=1 "o
iw1,2,...,N (1.45)

vhich is, in fact, (1.36).

In section I.2 we have shown that any solution (if it is not
unique) of (1.36) vill give the seme mean square error. It is,
therefore, immaterial whether other solutions of (1.36) exist which
do not satisfy (1.40). Nevertheless, as we will show in Appendix C,
all solutions of (1.36) are necesserily the solutions of (1.40).

We shall now investigate the solution of the modified system of
integral equations (1.42). It is shown in Appendix A that if a solu-
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tion exists, 1t satisfies a set of simltanecus differential
equations

2
d , .
Q- :1:5) o) = [DIK(t) 0<t<T (1.46)
The solution of (1.46) cen be written as

]
K(t) = Q- %;é)[nrl i) O<t<T {1.47)

Since the information pertaining to the derivatives of K{t) at
tw0 mod % =T is not included in the derivation of {1.k), we
£ird thei certairn comditions o y{tia) are necessary in order

thoo the X(%) so obtained from (1.47) do satisfy (1.42). Those
conditions are obtained by substitutirg (1.45) into {1.42} and solv-
ing the resultant equetions as en identity. The development parallels
that appearing in Appendix 2 of Devesport and Rootou

Let us first establish a useful resuit. From the defindtion
of W(it\), that is,

A 1 O M
w(ltl) = = == A {1.43)
ex g-oo Q")

we obtain the corrceponding diffarential equation
ag A <, g [
= (ltl) = ®t) (1.49)
at
In particular, let

4a
2 7
Q(A ’) bl k:fo Qa\‘a
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Bg. (1.49) can be expressed agt

a
R AT Al (1% B L) (2.52)
k=0

This relation will be used later on.

Using {1.50), Bq. {1.46) can bz rewritten as

a
. J .
(0] gz} = < £ (1% g (8 /) 02+ <T (1.52)

Maltipiying both sides of (1.52) by w(lt-ti) end integrating
the resultant expressicn from © to T, we obtaln

T t
oIl § 1 t-cDE(r)ar] = g kfo (-1) x(ak>§~ Y We-rdar
0 o

& ki (-15% g L2 g) Fr-tdae

T

(1.53)
¢ Xt T
Eere w2 have separated the rang: of integration inte two regions;
for 0<¢<t, the kernel is Wt - %),

vhile for t <% <7,
the kerael lg W{%- t).

After integrating the right-hard side of
(1.53) by parts 24 times and making use of the property theiuk

Whohy = ad ¥V

o=y
Lol
5]
54
L=
>

we are lefh with integrals

# WBYe1) amotes the 2T derivative of W(itil.
* See Appenilx A.




unintegrated as they occur at every other step. In addition, terms
involving the derivatives of ;ﬁﬁa) at t=0 and t =T are
carrizd over from each of the 24 integrations.

Tt 1s shown in Appendix B that the right-hand side of (1.53)
can be expressed as

2g G(z-l)(t) . A 522d ?r(’(-l)('l'-t)z
I=d E

el 2
moq
+{ = (0k ¥y por)y{rsa)ar
o ke

vhere gg and -Z-l are column matrices vhose elements are Yﬂ
and Zg (1 =1,2,...,H). Y, and Z,, sve linear combinations

of the derivatives of yi(i‘da) (1=21,2,...,§) at t =0 and t =T

defined by (B.8) and (B.9) respectively. By (1.51), the sum-
mation in the last integral of the above expression is (¢t - 7).
Hence, using the property of the delta functiom,

STe(t-x)xgm) ar = y{bia) (1.55)
[+

BEq. (1.53) can be reduced to

o { %0160 Kme] = glos) + = S8 Doy
) l‘l —l

24
+ tfa. HU-1) (r-t)zy

0<t<T (1.56)

We observe from (1.56) that in order for the solution obtained
from the differential equation (1.46) to satisfy the system of
integrel equations (1.42), means should be provided to take care of
the additional terms
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24 peled

t My g 4 2D o £)2,
=L 1 fa
Let us add to the solution of the differential equation two terms of
the form

Ela(t) + ia(t - o

vhere bl and ¢, are columm mntrices consisting of e¢lexents b 317
€1, for J = 1,2,...,8. Then i% can be easily shown that (1.56)
ig identically setisfied 1

2d
z Wy < Stue (2.57)
{=. 4
and
24
g WUy g, - Wr-oE (1.58)
?ﬁl _i

vhere (¢ and E are colim matrices defined by

=]

= (D, (1.59)

i

E = [Dlo, (1.60)

It will now be shown that & necessary and sufficlent condition
that the solution of (1.36) be wiique and absolutely integrabie is
that yltia) obtained frau {1.4L) have XN(2¢ - 2) undetermined con-
stants. Thic meens thot tle detorminaut |DF(A°)| 15 a polyncmiel
of degrez N(2d - 2).

[¥ 3
# Thie does not violate Eg. (L.40) stmee § [a(t)fat = 1
LS




We note from (B.8) and (B.9) 4hat zz and EL aTe linear
funetions of y{tia) end ite successive derivatives eveluated at
t =0 sand t =T respectively. Let ue assumy thatl yj’o&a} bhas
K24 - 2) undetermined coefficlents. Then both ;_t! ad Z, can
be exprassed as linear cowbinations of the same number of coefficients.
From (1.48), we see that ¥(t] cen be expressed as

a
HE) s T Aiez‘“i"" £ >0 (1.61)
iml

T: Pellows thnt

~ & E;\ o
Wy e £ (et ope™t £ 20 (1.8
=l - i

Jpon equating the eorregponding ccefficients of g At i os 1,2, 000000
in Bos. {1.57) and (1.58), we cbtaln 28 slgebraic sguetions.
Since the nuuber of ucknowns ig aise 283 -- #{&1 - 23 of which
belong o ?—f and 2 y; and the rmaizdng 28 are eontributed by

G @nd H -~ =2 unique golution can aulwuys be obtalied.

Sc far, we have only copsidered the Zindte memory filter. The
redaglt, howsror, can be applied directly to the infinite awwmory filte:r,
in wkdelr T is dnfinite. For the intioile memory Tilter, the sta-
Wiiity condition becomes

o
y {Ka(tﬂdt <o ) m1,2,...,H (1.62)
2]

Eg. f1.63) tmpiies that
A. The roots of the equation
oAy = o (1.6

csmot 1.2 pamely roal, and




B. The terms in K(t) which belong %o the roots of {1.64)
that lie in the lower half of the A plane should se digcarded.

when cordition (A) is satisfied, a unique soluticn ogain can -
be obtained. In the infinite remory cese, it 1s necessary to use
only {1.57}. The number of equations as well as the mumber of unknowns
are reduced by & factor of 2. ’

As & fingl remark, we gee frax oar resuld that it is not neces-
sary for _y({t4a) to have N(2d - 2) undetermined.constants if the
stability conditions -- (1.30) for the finite memory filter and
(1.63) for the infinite memory filter -- are removed. In this case,
we can giways cbtain a formal solution by adding delts functions and
bigher order derivatives of delte functions to the solution obtaiied
from the differentisl equations. The successive derivatives cf
deltsa functions are defined by

o0
{ gl (¢ - t )r(tlat = uf £t (t,) {1.65)
~o

As an exemple, consider the solution of {1.36) vhen «li re.m(xe} = 1.
It ean be shown that {1.56) will be identically satisfied if we
add to the solution of X(t) obtained from (1.47) ‘ihe sdditional
terme

2>:d gy, o z;a{ 0 1s - e

=1 4 g e

and chooge 3@. and Ef so that the fclloving equations arve satisfied:

[p] bL u 1] £=1,2,...,24 {1.66)
and
[p] e = 'Z‘f f+1,2,...,23 {1.67)




The physicsl significance of the higher order impulse functions is
that the filters are required to perform differentiation operations.

At lesst two procedures can be adopted to obtain the solution
of {(1.36}. For the mmerical exsmples in the next section, the
following procedures have been adopted.

1. Use {1.41) to obtain the homogeneous and the particular
solution of y{t4a).
2. From (1.47), ve £ind K(t).
3. Add to K(t) two terms of the forn by gt} + cl8(t-T).,
4. Substitute the solutions obtained in steps {(2) and {3) above
into (1.36) and perform the integration. The unspecified constants
are determinsd by solving the resultant set of algebralc equatioms.

It should be notad that K(t) obtained from steps (1) and (2)
sbove 1is ess:ntially the solution of the set cf differential
equations

2 2
\ a 4 ;
{Dp(- dta)]g(t). = -~ dta} z(b@} {1.68)

5. Eeomsples

1. In this example we consider a prediction problem jn the
presence of noise. Let m{t4a) De the desired output. The message
m{t) 1s s random square wave taking on the values T1 with aqual
probabllity. The probability demsity of the time duration between
transitions, t, 18 Ble'bn {a Poisson process). The second order
probability dersity function of the message is given by

plm, =) 1 - e PLT2Y1(2, 1) 4 §-1,1)]

+ %-(1 +ePUR2Yy (1) 4 (-1,-1)) (1.69}




o3

where (4,2} denotes B(ml - :‘L)B(mQ -~ 3%. 7In other words 1t is
tbe point vhers mit - fl) takes on value 1 snd w{t - Te,’} takes
on value j. The probability demsity of the noise, n(t) is of the
game Porm wiln 2& replaced by 532. W= shall choose Bl " 2,

1
E}%ah, and 2 =3

'By using {1..20) apd {1.21), we first obtein p{x x2» and
plm R’ 1 vhich upon substituting into (1L.12) yiwlds two ginultaneons
integral equations. Inspection of the resultent integral egquations
zuows that E (G} = 0. The integrel eguation for Ky{t} becomes

" T - 9 - - r
e 2t . gv [eRIt-T] 4 bl ﬂ]lca('r)d'r DSt <T (1)
The Fourieyr trunsform of the kernel is
2y 2
i) « DECL 2l 2 8) (1.72)
Q(x") A POAS 4 63
Fram atep 1 of the procedure; we have
a2 . -2t —
(-=5+8jy(t) = e© oLt<T LS
at
Therefore,
1, -2t ) o eas
yit) = Q" J- +Q12J_ {« 0Kt <T {1.75}
Step 2 ylelds
Kflt; = —(2— [on -Ex + Qo eﬁ"] DEt<LT (1.7

¥e now add to 1{2'{%;\ the terms bnb(t,» +eqq Ht-P} und suvbatitute
the complete sxpression for Kz('c) into (1.59). Assuming T =
100 miliiszconde, we £ind that the integral equation can be satisfier




24

when the unknowns are

Q, 4183 >< 107 ; b, = 420 >< 107

le = =3 ><10-5; c = 63 ><10-5 {1.75)

21
BRence

xo(t) = 0

K (t) = 0.428e V8% 4 0.008e1CE 4 0.k26(t) + 0.0635(-0.1)
0<t<01  (1.76)

Kz(t) s 0 for t>0.1

Since Ko(t) = 0, the optimm filter t?ke.es the form of a linear
filter vhose unit impulse response 1s # K {t) for 0 <t < 0.1 and
is zero for t > 0.1. Thisg is in fact the optimm linear filter since
{L.79) 18 actuslly the modified Wiener-Hopf mquation where the upper

limit op thes integral has been changed from w to T.

2. Here we congider a pure prediction problem, namely x{t} =
m{t). The desired output is again m{tia). Ve sssume that the second
order probebility density of the message is
plx,x;) =

L - Pl gfelenl. (Pl ite Tl o)a(1, -1 )4 -2,234(-1,1)]

+ 301+ R L U S UG C Ly TP WP WP LR PS)
+ (1 - Pl Paltamml | (Bl te-mil (o 1) 41,2040 2040 -12))
+3501 4 Pl Tl Beltemmil , o-(Brtadl 2ot (5 oh(1, 1044 -2, -2 1, -1)]

(.




Thie situation arises, for instance, when the message is the sum of
two independent Poisson processes whose asmplitudes take on the values
*-;‘- and ‘i‘g respectively. The second order probability density
function of a Poisson process is of the form given by (1.6%).

In this example, let us allow the filter to have an infinite
memory. To simplify the calculation, we choose 51 =2, 52 = 1.
The prediction time & is arbitrary. lLet us denote e by k (0 <k
<1). Upon substituting this information into (1.12) we obtain the
following two simultaneous integral equations.

. ©
k%2t 4 Bke't = S [e’e‘ t~r|* e',t"ﬂlxl('r)d-r
o
© .
+ ‘ [-e'al t-vl, e’lt'ﬂlxa(r)d-:
)
2 -2t ~t (~°° 2lt-tl, _-lt~1l;
+k“e + 3ke =y [-e 4+ e .vxﬁ(t)d‘x
)
X 2 ter), -|terl
+§ e 4e Kyit)as  t20  (1.7)
o :

It is easily verified that the sclution is

K7 = 3 (3 - ¥¥)s(x)

K(7) = 3 (k4 kW) (179}
It is obcerved that the only solution ror which K2(1) = 2!&(1')
"[a linear filter] 1is wvhen k = 1, which corresponds to the trivial

caze of zero prediction time. Fcr any finite prediction time «a, a

non-linear zero memory filter results.




Ry using (1.37), the normalized mren square er.or can be evuiu-
astad as

( L2 i pept B et e
'i \€2>AV = l-g% > giﬁ ['8' e 4 Eke ]Klﬂ\,t)dt
oy

= 3 - {0.,91:2 4 Of.lkh} (o801

For the aake of compasison, the mean squaere error of the linesr
filter is alaso obteined. The entccorralation Huetion of the mes-
sage i3
36 -2t} b -1}

e *3

R} = z e {1.81)

The Wiener-Hoptf equution becomes
. -2t 2 - P2t , =ftet by s
36ke <+ W% 0 = Sﬂ [36e < Tl e nfr)er  t >0 {1.82)
The solution of this equation iz found fo be

¥y e~1=86t

hit) = 0.12(k ~ * ego,lzgma + 0.861kis{t) 11,8%)

Ta= corresponding normalized mean square erxor is given by

PN 5.5 1B

P (o] - " Yy
E\ea, -; . X R{t) > [2,?- ke o 4 5, e tJdt
[ l\.n
L JLinesar °

= 1 - io,om«.h + 0"1.761:3" + 0.812%°] 3.8

Jaspzetion of (1.8-4 and {1.60} shows that (1.8%) 15 alvaye
greater thou or rgual to {1.80); that is
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{<e PR JQ_ >l= 0.088E" - 0,176 + 0.086°

- 0 088k%(1 - 1) >0 (1.85)

The non-linear zero memory filter, therefore, always gives a lower
rean square error than that of the linear filter. As s mmerical ex-
ample, let k = 0.5 {a = 0.604 gec). We find

{(\e""‘)m} = 0.819; S‘<€2>AV} = 0.761 (1.86)
Linear A N 1
or, approximately a 5% improvement.

2. For purposes of illustrating the procedures outlined in
section 4, we consider here another example of pure predlction. Let
the desired output be m(tta). The amplitude of the input process at
any time cen take on any one of the four values 11 and 12 with
equal probability. The second order prohebility density function is

P(x;,%,) —;_‘-5(1 - e PUIT T by een oyi(a, 1) -2,204-1,1))

+ %3(1. - e'ﬁa“l“?\)[(2,~1)-n»(1,-2}4{--2,1.)+(-1,2)}
L - ePlmmtelyz, 10000 20 -2, 1)1, 2))

+ %6{1 + Pl r-raly el mi-raly o Bsli-Taly

> (2,211,104 -2,-2}+(-1,-1}]  (L.87)

Here, we let ﬁlsaaul, ﬁ5n2 and we denote e® by k. The
optimizing integral equations are



T e .
ske b . x2e 2t . { r3e-1 67l e'a'“"‘ml((z)amr
(o]

. ST [e"‘t"f‘" e‘elt"d]KE('r)dr

(+)

T
7ke-t+k2e_2t = S [e'lt"r'— e'elt"d]xl(‘r)d-r
)

T
+ go [3e

The Fourier transforms of the respective kernels are

2y 10(A° 4 2.8)

~leel -2l t-f']xegf)a-: 0<t<T (1.88)

(1.89)

(1.6.°

(1.91}

-2
36

10

%

J

2
W AS) = (» =
n 22 Az’ + 5)? + b
and 2
wl?()@) = 21()"2) - Eé -A +222
- A A4S 44
It follows that
10 2 R T
[D] = and [D] =55
2 10 y ~§ 10
Following the above mentioned procedures, we find that {1.41) in our
example is
.t .2-2t a2 & Tl
i 5ke ~ - ke 10{~ ——— 4+ 2.8 — 4 2
2 e b gt %
2 2
-t 2 -2t q a -
Tke = + ke 2~ + 2} 10(- =, + 2.8)
L i e at? %
DTt

(1.92)

S
v tt)

3
v, (t?

-




which after simplification becomes

- -

2 2

- - ay a-y,
ske~? . 1% 2t -26 —& 4 68y, +10 —= - by,
1 at at
- 35 . (1.93)
a a4y
-t 2 -2t L 4] 2
Tke “ 4 kK'e 10 g2 - by, - 26 —= 4 68y,
L ] 1l dt2 2 |
S 0<t<T

g

o

The solution for ﬂt} is found to be

y(t) = Qu_eﬁt + Qj_,‘,e"!§t + Queet + Qe+ %ke't
yplth = ‘Qu‘*\rét - le""& + 0% (g - ST+ T

Proceeding to the next step, we obtain I{t) from (1.47):

(t) 4 o =27
k ) [:llz -5 & M} = [% % | | n (1.95)
5

it -
- L
0<t<T

vhich after simplification becomes

Kl(t)ﬂ }—Blle ., Blze" 2t
= o -t wvhere Bll and BL’! (1.96)
l%(t) ! -Bj ¢ - B¢ are constants

Fov let us add but}(t) «!-..'cns(t-l'} rd balﬁ(t) + cala(t-fr') to
Kl(t) and Ke(t) respectively and substitute the complete expression
into (1.87). Ve obtain, upon letting T = 100 milliseconds,




= -2.76 > 10~ (k - k°)

121,31 >< 1077 {k - ¥

S

= (1293 - 293k°) >< 107
{1707k + 2936°) >< 1072
-37.21(k - k°) >< 107

&
]

21

[
i

11
21 "ty (1.97)

«Q
]

It is clear that KE(t) # le(t) {excluding the cese where k = 1).
Consequently, the optimm predictor for this problem is always non-
linear. Tt is interesting to poiat out that in this particular example,
one can alsc obtain the same solution by solving just a single inte-
gral equation. By sdding the two equations in (1.88), one cen
imnediately obtain the relation that

K (t) + K(t) = 3000k >< 1077 8(t) (1.96)

Upon substituting {1.98) into (1.38), the two similtaneous equations
can be redvced to a single one.
The normalized mean square error for this non-linear filter is

i
} 2 = - 1 .~ ) y )
| < >AV-1 1 - 55 (30 + 20 + k) {1.99)
. ‘ﬁl
Correspondingly, we f£ind the normalized mean square error for the
linear filter to be

{<e2> AV} 1:nel - 11;5[55"113 + 3.80 + 0.1K%) {1.100}
ar

We observe that the difference between (1.100) and (1.99) is always
greater than or equal to zero; that is
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i [0.98° - 1.8 + 0.9k*] = B> 0.9 > (1-¥%) >0 (Lo

‘ons2quently, we have shown that improved results cep be obtained

by using a non~linear filter of the ! clags in vlace of a linear

filter. The amount of improvement depeida on the prcblem at hand.

For the particular example we have chosen here as wvell as the numeri-
cal values we have assumed, the improvement is negligible. A k = 0.5,
the improvement is about O0.15%. Inasmuch as there are five para-
meters involved in this example (,’31, By B}’ a and T), it is
unlikely that sny general statement can be made with regard to their
effects on the mean square error without first obtaining an explicit

expression in terms of these parameters.
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II. MULTIPLE PREDICTIORS

The formulation of problems into a set of simultaneous inte~
gral equations occurs in many fields; for example, in the study
of radiation and wave propegatioa involving quite general boundary
coru:lil.t:l.ﬂzms.l2 One problem which is of particular interest to us is the
synthesis of linear predictors and filters for multiple time
geries. Briefly, the problem is as follows:

Given a mmber of stationary time geries,

£.(t) = m(t) +n,(t)
£,(t) = m(t) + n,(t)
£,0t) = m(t) +nt) (2.1)

ve wish to find a set of linear filters hi J('t:) so that the sum over
all dinputs J (3§ = 1,2,...,k) of the outputs of the hm(t) operat-
ing on the past of ma(t) + nd(t), respectively, is the best approxi-
mation in the least square sensge to "‘1‘"’“’)’ (L =1,2,...,k).
Specifically, let 1 = 1. Our aim is to find h”(t), (3 =1,2,...,k)
80 as to minimize

k T
<m,(t4a) - fflgo £ (-0 (v)arT g (2.2)

A block diagram of such a k-input, l-output network 1s
shown in Fig. 3, where Ql(t) denotes the best estimate of ml('b-fa).

1

Wiener™ has shown that the minimm of {2.2) occurs when the

by 1(1') satisfy the following set of integral equatioms:
k T
xd(m) - Lfl So ¢13(-r-o)h1£(a)da

OSTST; J'l,a,ao-,k
(2.3)
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r.}.(f)__,. hu@(—,) »
fﬁgﬁ-—y By (1) >
| iy z ml(t) Sy
|
|
£.(¢) .
e hu‘('t,) >,

Fig. 3 A K-1 Pole Network

and
fJ(t-'t) , and ¢£ {t-c¢) 48 the correlation function between fj(t—-t)
and fz(t-c).

where X,(vsa} 4s the correlation function between m, {t4a)

If ve suppose that the Fourier transforms of the respective nels

(ﬁ‘,(x)} are bounded at o0 and each Fourier transform can be represented
by a rational function in JA, namely,




Dg.Pp (30}
By (n) = —J-L—-’Zq(ﬁe) (2.%)

then the technigue developed in the previous section is also applicable
7
for obtaining the solution of (2.3).

By raralleling the steps in Appendix A, it is seen that the
solution of (2.3) satisfies a system of differential equations

.2
e in() = o §;2> X{tthg) O<t<T (2.5}

where
h(t) = e column matrix whose elements are hm(w, (f=121,2,...,k)
X(iA42)= a column matrix whose elements are xd(ua)
(3 =1,2,...,k), und
fDP(%)] = & kK xk square matrix whose elements are linear
operators Di JPi J(E%:')'

The essential difference in the derivation of {2.5) 1s that here
it is mnecessary to break the off-diagonal integrals into two separate
integrals when each differentiation is performed. This is because
only the kernels on the diagopal axis are even functiom of their argn-
ments. In other words

¢“(1-°) = ¢(J(lr-°l') (2.6}

only for [ = J.

If a unique, abeolutely integrable solution exists, that is, if the
impulge response of all the linear filters shown in Fig. 3 satisfies
the stability condition

T
{ Ihu(t)| At € 0;  21,2,.0., k (2.73
0
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the solution can be cbtained by adding delta functions located at
t=0 and t =T to the solutions of (2.5). The unspecified
constants can be determined by substituting the complete expression
for h(t) into (2.3) and solving it as an identity.
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A-1

APPENDTX

s

We wish to show that the solution of

N
z,(tha) = = Svm(it-'rl)xj(‘t)dr 0<t<T

J=1 o i=1,2,...,N A.l
with the condition that
© . D, .P (1\.2)
wm(xg) = %nw wid(m)e“*’ma-t = -—%{-ﬁé—{-—- A.2

satisfies the following system of differential equations.

& N & .,
&l- Fa)z{ta) = Jil Dy 4By 4= SoolKy(t) A.3
1=1,2,0.., N 0<t<T

On account of our assumption that v, J(lt 1) is of the form
v Ol = ~frlt )
0y, (e 1) i Be Ak

it is readily verified, by teking the limits of the derivatives of aay
order fron both sides of t = 0, that

k

Equation (A.l1} can be written as

N |t g o
zi(taia) s 51, sn wia(t--r)xa('lv)df4-.St viJ(T-t)Kj?,T)dT} A.6

0<t<T; 1w1,2,...,8
Taking derivatives on both sides with respect to time yielde¥

* (&) {X) refers to the derivatives with respect o the argument X.

i




A-2

s R
2 (taa) = = {KJ(t) [y (0%} - ‘,m(o‘)ﬂs

J=

g% w(l) (t-'r)x {(t)a~s

s (l)('r«t)l( (r)ar} 0<t<T AT
121,2,...,8
Cn account of (A.5), the first summation vanishes and we are left with

3 N t
XM bia) = Jﬁlg { wﬁ)(t-r)xd(r)dr- ;, w(l)('r-t)l{(‘r)d‘r} A8

0<t<T; 1=1,2...,K

Similarly

itsa) = § {K I PRy )1}
J=l

S (2> (t-7)K (-c)am-g w(a)('r—t)K (*r)ar} A9
1 !

0<t<T; 1=1,2, cee, N

vhich in view of (A.5) reduces to

2 ei) = ist (2>(t—r)x(1’)dr+§ “Rmnwar} A0
J“‘l

o]
0<t<T; 1=1,2,...,N8

Following the same reasoning, one can show that

R
z;([k)(b-id) s I {So (k)(t-f)x(%r
J=1

+ (-1)¥ S w(k}( ~t)K (r)dr} G<t<T A2
fe1,2,., N




Since the even derivative of an even function is again an even func-
tion, we can write (A.ll) as

E T
zgk)(m) = I g w(k)(\t-T\)K {(t)atr for k = even A.l2
=1 o 0<St<T 1a1,2,...K

From the inverse Fourier transform relationship of v, J(x) , we
obtain

(k)(‘x‘) = .32;; §° (.i)») —lizg-i——z e™ @y for k = even A.13
2o

2
Consequently if we operate on both sides of (A.6) by Q(- EE ) , the
denominator Q(X ) venishes and the resultent equation becomes

T,

2 R T o .
d N ; l Jhl A
Q- =)z, (t+a) = = D K, {1)at >< (>~ Je
ate’ 1 a1 iJ &o J Xm 2x
0<t<T; 1i=1,2,...,8 Ak

The mmerstor polynomial P, J(ha} can be built up by differentiating
the integral. Then (A.14) can be written

2 N 2 7 ®
d 1 at-r
(- 4 )% (tha) = Jz 13 1., —-dta) So KJ('r)d't > i_ e a
0<t<T1=1,2,...,§
or
& . . X a2 )

0<t<T; 1=12,2,.e., R
where use has been made of the relation

(o ]
-’é; gw ME-Tla 8(|t-1)



APPERDIX B

In this apperdix we carry out the first few integrations of
(1.53) snd show how it leads to (1.56)}. Let us rewrite (1.53),

t d

ng T’v‘r(}t-rﬁ)xd('c)dr = SOk“Z-.O ky§2k)(ﬁa)§(t-r)dt
d

+ \: = 1350, 2w e t)ax

O<t<T; 4=1,2,...,8 B.1
Integrating the right han( side of (B.1) once by parts ylelds
T A
q, § ¥ ima(l -t f)ar
0

d
v T (1Y%, > [y na) > S(en)]

k=l °
da t
.k (2x-1)
ol Yoy ‘o i (i) > W (t-1)
d T
v 5 (-1, >< [ M mal < Net)]
kel it
d T
- & (—-].)kq2k >< \: ygak"l)(ﬁa)@u) t-t)adt
k=1
O0<t<T 1=1,2...,8 B.2

Since
st = (1Ko 8.3




B.2

the terms evalusted at T =t cancel. The remaining termg evaluated
8 t =0 and t =« T are

4
- B (g < iy > )

a
s (1)K [(21:-3.) )] >< Si-
*> 1( 1) 0 < lyg {Ma)] >< W{T-t)

1=1,2,0..,N B4

Performing the same integration by parts on the remaining integrals
gives

a £
£ (-1)% o >< [y{3B) (na) >< § (pan)]
Kol Ly Iy v d o
+ ?:( SLINNEORE N .2 e
=L/ “2k % }’i (T'i‘a) >xXv (t“’f)d‘f
k=1 Fe
d PR T
- kz:l(-l)k ay < [y:(‘ak—e) (ra) >¢ 5 (1-1)) L

a 7 .
+ k;“31(-1)k Q. < St yiak'a)('m) ><9<2)(1~t)a1

0<t<? 1=1,2...,§ B.5

The terms evaluated at T = t again cancel. The two other terrs evalusted
at t w0 and ¢t = T are

ST g < 152D 8
ksl ’ AN

a . .
-z kg < [ygak'a)(ma)]%m(m«t) Le1,2,.0..,8 B.6
k=l ! -




B3

The remaining integrals are again integreted hy parta and the process
is continued 24 ‘times, leaving integrals

1

i\ ,
Y4 : A2k 3 -
(-1} oy > So yi('r-m)v( )(H;-n': ot 5 1 =12,2,...,8 B

wintegrated as they occur st every otbex step. In addition, we have
terms in the form of {B.4) snd {B.6) lert over a% eash of the 24
integrations. Iunspection of {B.4) end (B.6) shows that the terms left
over can be put in a compact form. Let ug define

a e I
Y,, = ~ L {-1}1‘ g xfyg‘ﬁk"u(a} ' 1w 1,200,
1 “ e 7 ¥y
o < = for £ = odd 5.8

n-el for § = even

and
a
o g o1 B

Zyy = 2 b1 (-1} < g > %yﬁ?“ m(ﬂa}? 8.9

e 5= for £ = oda . !
o L= 1,0, .0

*x% Lor ,f = eyen

\

Ther the Loial aumber of herms which are svalusted at t « 0 apd L =17
can be written as
24
<

-1 i . A, ..
p E:'H ’1\:{2 1‘"{,1‘.)‘ o= Zgz}w TPt L o2 L,25004,00 BAD

P}
b
by
Py

It 18 noted theth Yi 4 and 2, ; are Linsae copbicetions of {he devi-
4 A |
vatives of y fwia) at =0 erd oW By sekdng uwen of  (B.7)




and (B.10}, +the right hand side of (B.1) becomes

24 2a
. alf-1) alf-1)(1-t)
I:l lu’x) (t)+y§l zﬂ,wl’ (

4
. g: y,(r+a) > A (-1)Eq, 3 or has

vhich can be identified as the right hand side of (1.56).

B-b

B.11l




G-l

APPENDIX C_

We wish to show thet if X{t) is the solution of (1.36), 1t is
also & solution of {1.42) wvhere y(tia) is eny solution satisfying
the set of differential equations {1.k1}. ILet the soluticn of (1.36)

be gg { Thep

6.2 T A
[DP(- 552)][30 Fi -t X(x)ar)

2 .
e z{tia) = [DP(- g:é-)}{nl"l;g}(t%a) el
“ o<t<r

vhere X]_“(E‘igl). could be any solution of (1.41}. Let us introduce

G!t) where

T A -
gty = [ Wlle-rhx(xdas] - (D17, ()

[>]
0<t<rT C.2
Tt is readily seen from (C.1) that
& e
O - t) = O o
[BR{- =53 16(t) C.3
£ we let
el = g lua) + [Dlo(t) R

then we see that ?(__tr___g); is a golution of {1.kh) 1f we cperate on
bovh gides of (C.4) vy [pP{- %ga)]["rl= Inspection of {1.23) and
{C.1) shows thet X{t} is the solution cf both equatiocne when
Hital o vitiay, which esteblishes the desired result.
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